Bot Factory 22
对话式AI平台
Bot Factory 22
对话式AI平台
VCA智能客服
帮助企业实现在线服务的智能化人机协作系统,提高坐席服务的效率、降低人力开销及新人业务知识学习成本
企业助手
Emoti VEA是竹间智能专为企业用户打造的企业级机器人虚拟助理( VEA), 帮助员工在企业工作中减少琐碎的事务负担, 让每个员工都能拥有智能的个人助理
竹间精灵
竹间精灵是搭建在BotFactory上,与之相伴成长的聊天机器人。竹间精灵可以在开放域的聊天场景中,予以用户富有温度的趣味应答,可以快速接入各种渠道,适应于IOT设备、对话机器人等不同场景。
多模态情感数字人
竹间通过文字、图像及语音的人机交互技术与竹间自主研发的“多模态情感识别模型”,助力虚拟形象成为能读懂、看懂、听懂、有记忆、自学习,真正理解人类语言与表情的“情感虚拟形象数字人”。
多模态人机交互
基于竹间智能的人机交互平台,结合图像、语音以及文字的情绪识别完成多模态人机交互。通过多模态的结合,达到听懂,读懂以及看懂的人机交互
语音平台
提供基于语音识别、语音合成、智能打断以及语音情绪侦测等智能语音服务,此平台旨在将客户的语音数据转为文本, 后续由智能机器人对话平台进行话术回复和信息采集, 为产品赋予真正能听会说、 听你懂你的能力。
AICC+ 22
解决方案平台
Emoti Mate 实时坐席助手
EmotiMate是集智能辅助、实时质检、智能陪练为一体,通过对全渠道数据深度解析,实现机器智能和人的智能的深度协同,从执行层、销售/服务管理层、运营管理层三个层面提供辅助工具,包括实时语音转写、流程导航、客户画像提取、话术推荐、实时质检等功能,帮助企业和员工实现高效率的客户服务和高转化率的销售
Emoti QI 实时质检
Emoti QI实时质检通过语音识别技术,将通话录音均转成文字,由机器人根据质检规则对录音进行质检,同时挖掘客户深层次需求,为客户提供个性化服务。基于竹间强大的AI能力为录音提供深层次的挖掘与分析,赋能坐席能力,销售分析,投诉预测,话术挖掘等数据分析能力。
Emoti Voice 语音机器人
竹间智能新一代语音机器人,集成了竹间自研的自然语言处理(NLP)算法与真人语音技术,基于多行业领域细分业务深耕沉淀,更理解业务,更了解客户,更具有智慧。
Emoti Coach 智能培训
基于竹间自研的NLP模型和语义质检模型,融质检和陪练一体,通过质检快速发现服务质量问题,并能根据质检结果,利用坐席画像和推荐系统,针对薄弱环节自动生成培训课程并进行课程推荐,大大提升培训效率,从而不断提升服务质量,实现员工快速上岗、促进员工持续进步。
智能营销
基于多种复合推荐策略以及基于deep-wide深度宽度网络的推荐模型,融合系统内外结构化和非结构化数据,根据用户数据和对话数据产生用户画像,充分勾勒出客户的特点和客户群体特征,配合语义理解和认知引擎,进行相关内容的推送。
Gemini 22
知识工程平台
Gemini KG 知识图谱
GeminiKG是Gemini平台的知识图谱模块。可针对结构化或非结构化数据进行知识图谱构建和schema构建,并可进行schema管理以及端到端的知识图谱应用,包括但不限于智能搜索、文本分析、机器阅读理解、舆情监控、风险控制等
Gemini KM 智能知识库
智能化管理企业海量非结构化的文档和数据,让所有的知识可以用简单的自然语言即可查询、应用。以竹间自研的NLP和KG提供智能搜索和自动文档解析功能,完成企业用人力无法完成的业务
知识关联
自动识别重要信息,对于相关知识直接进行知识、文档关联,不仅保证知识可溯源,消除知识孤岛,而且通过知识内容分析及知识关系分析可进行知识洞察。知识关联后,上下游的知识联动起来,可以进行变更提醒。
知识管理
可以进行多种知识类型管理(文档、文章、流程、图谱等),多源汇聚,平台统一管理应用,权限分级,达到节省管理成本的效果。
智能采编
借助AI智能化技术,将文档中非结构化知识提取转化为结构化知识,极大地降低了知识采编成本。同时提供了一个简约但足够强大的在线文档编辑器用于采编流程,在提供基础文本操作的同时,可以在文档中插入脑图、在线视频、表格、公式等丰富功能。
智能审核
通过机器智能审核来提炼重要信息, 并进行拼写纠错、 语法纠错等检测, 不再依靠人工逐句审核, 减少人工审核的时间, 提高效率, 降低知识风险。
智能应用
通过对非结构化知识的转化、提取及加工,一键将知识发布到下游场景如智能对话系统、坐席辅助机器人、一线知识门户、搜索门户等,发挥知识效能
Gemini Studio
只需几分钟即可零代码创建一个低运营需求文本工作流。Gemini Studio是竹间自研的新一代文本工作流管理平台。可用直观方式设计繁琐、高难度的文本处理工作,对海量文档进行存储管理与应用,自动化提供建构图谱、认知搜索、智能问答、知识推理、文本审核、比对、查重等多种知识应用信息
认知+RPA
通过 Gemini Automation 平台,融合 RPA 与 AI +NLP,实现智能自动化企业。让数字人员工赋予更强的业务处理能力、解放人类的双手和宝贵资源
Scorpio 22
机器学习平台
NLP 22
自然语言处理平台
SaaS 产品
对话机器人
任何人可以通过Bot Factory,获得不同行业不同场景的智能对话服务。能够针对您的业务需求,将对话机器人训练成懂您业务知识和流程,了解您的客户,同时具备客户同理心的7*24数字员工。为您的客户提供更高效、专业的优质服务。
营销助手
Emoti Salesmate是一个“销售对话智能”的产品,通过自然语言处理(NLP)技术对销售人员的语音会话进行解析,帮助一线销售复盘和学习每一次客户沟通,同时赋能销售经理为团队提供培训,通过人工智能捕捉和理解每一次客户互动,然后通过知识图谱与数据分析进行洞察,使团队能够根据知识数据而不是意见作出决策。
陪练机器人
Emoti Coach 是一个沉浸式模拟实战场景的“智能对话练习”产品,通过自然语言处理(NLP)、多模态等技术,完整复刻真实场景发生的对话,企业可用于进行候选人的AI面试,快速甄选人才;也可以帮助企业员工提升销售/客服对话技巧,在第一天成为业务专家。
认知洞察
No-code NLP 平台,以竹间硬核自然语言技术,无需编程,即可将任何非结构化数据自动生成 insights,再以 open API 与任何应用无缝衔接。丰富行业的标签库与知识图谱,让模型训练与标准工作大大降低。
智能知识库
竹间智能知识库是企业的知识大脑,能够将企业积累的海量非结构化文档及异构数据通过自然语言的解析,变成结构化的知识。解锁企业沉睡的非结构化数据,为企业沉淀和积累宝贵的知识资产,并基于这些知识进行查询、语义搜索、分析、预测、决策、洞察、根源分析,做到知识整合,消除知识孤岛和促进企业知识资产沉淀。
AI+金融
构建真正AI一体化的技术能力平台,促进金融科技的进一步发展
AI+银行
推翻碎片化产品服务ALL-In-One 全生命周期解决方案
AI+保险
完成保险服务生态闭环,缔造新时代业务模式
AI+理财
成熟的客户经营和营销体系,实现业务转化,降低营销成本
AI+证券
打造一体化闭环管理模式,通过AI技术支撑和辅助多元化应用场景,重塑行业竞争力
AI+政务
助力政务实现全渠道服务智能化、一网通办智能化、服务热线智能化、政务监管智能化、内部协同智能化,携手迈入“智慧政务”时代
AI+医疗
赋能医疗行业实现智能化转型,全方位辅助科、教、研、医每个环节
AI+企业
让企业里的每一个员工解放重复劳力,专注于核心专业技能更高的工作
AI+IOT
更有温度的智能终端,开启便捷体验新模式
AI+制造
赋能制造业知识管理、售前咨询、售后服务等各业务场景,大幅提升企业管理效率
Avaya Total Solution
竹间智能与Avaya基于业界先进的技术和优势打造联合方案,为新一代联络中心提供智能化应用服务
在线咨询
仅能体验5条对话,更多体验请 申请试用
让AI读懂人的喜怒哀乐?百度都没敢做的事情,这家创业公司已经有了成果
竹间智能 | 2017-08-15
2013年上映的美国电影《Her》知名度不算太高,但在近两年人工智能的热潮下,它被提及的次数越来越多。
在很多投身人机交互研究的工程师和研究员心中,这部电影描绘了他们心中的理想:拥有迷人声线、温柔体贴而又幽默风趣的人工智能系统OS1萨曼莎除了能提供如日程提醒、播放音乐等功能外,还能与用户对话谈心。在情感、智商方面,萨曼莎已与人类无异。
简仁贤是《Her》的影迷之一,2015年8月创业之前,他供职于微软(亚洲)互联网工程院,任副院长一职,负责领导微软小冰及小娜的产品技术开发,在人工智能、搜索引擎、机器学习、深度学习以及大数据方面都有涉猎并经验丰富。
职业经理人的道路本可稳当地走下去,但简仁贤却选择离开创业,他的目标是将“萨曼莎”变为现实。为此,他选择自己成立公司,力图将图像、语音、文字的人机交互融合,专注情感情绪识别,打造一家基于情感人工智能的人机交互公司。
于是,2015年下半年,竹间智能成立了。
根据简仁贤原本的设想,三者融合的界面应该在创业五年之后能做好,其中三年时间打磨技术,两年时间落地,因此,第一笔融资至少要支撑公司运转三年。
但现在,简仁贤的计划必须要做出改变了。
被改变的计划
与深网见面的那天,简仁贤迟到了,他的上一个约会是与投资人会面。约定时间过后二十分钟,简仁贤端着一杯美式咖啡走进会议室。接下来,他要接受包括深网在内的四家媒体两个小时的采访。
忙碌的状态在今年会一直持续。
“下半年会很忙,会提供很多解决方案。我们每周、每个月都会有很多新的大型用户来找我们合作,所以下半年会更加着重在商务的拓展,还有解决方案和应用的落地这两件事情上。”
按照简仁贤原本的规划,商业拓展本应在2018年才会启动,但客户及技术发展的需求让简仁贤决定加速。
改变发生于去年年底。
“我刚开始只是一股脑非常想要完成电影《Her》那样的场景。后来发现我们光做技术达不到那样的效果,一定要到行业里去应用。因为只有到行业里去应用,才能够拿到真实的用户使用数据,对你的模型才能做更进一步的精进。”
第一个被验证可以落地的垂直行业是电商,由第一个案例总结出的经验,随后被应用到金融行业中。与金融行业打上交道只是缘于巧合,但在与金融行业打交道的过程中,简仁贤发现了金融机构对于人机交互的强烈需求。
“传统的金融机构备受压力,所以他们想要用我们一开始开发的对话及情绪情感技术,让他们的用户更能够贴近他们。”
依赖基于图像、语音和文字的情绪情感识别技术,竹间智能打造的人机交互系统与传统问答系统相比具有明显的特点和优势。
传统问答系统本质上需要依赖模板维护,系统通过识别用户问题中的关键词给出选项,并未真正实现人机对话,体验不佳,且维护成本高昂。竹间智能研发的交互系统则能够基于语义理解、语音和图像的情绪理解,真正理解用户的意图,快速给出准确的回应,并根据用户当前情绪,适当予以疏导。
简单地说,竹间智能的人机对话系统更像一个真正的人。虽然要达到《Her》中的情景仍有很长的路要走,但相较传统问答系统,竹间智能的成果已往前一步。
三位一体攻克情绪识别
竹间智能团队目前语音、图像、语言三个方向的团队人数正在趋于平均,语义理解和情绪识别是团队攻克的两大技术方向,其中,简仁贤尤其喜欢提及竹间智能基于图像的情绪情感识别技术。
如何让机器辨别出人的喜怒哀乐?传统的方法是将人的表情分解成不同的部分,基于不同部位的表现计算出一个可能的表情,竹间智能则是利用深度学习的方法进行识别。
竹间已经能够对包括开心(Happy)、生气(Angry)、哀伤(Sad)、惊讶(Surprise)、害怕(Fear)、反感(Disgust)、轻视(Cotempt)、困惑(Confused)、中性(Neutral)在内的9种人脸表情情绪进行准确识别。此外还有22种人脸的相关属性,包括性别、是否佩戴眼镜、头发长度、胡子样式、肤色、发色、年龄以及皮肤质量等。语音的情绪识别则是基于音频、声波,结合深度学习的方法进行。再结合对文本的22种情绪识别,就构成了完整的对人类的多模态情感情绪识别判断。
同时对语音、图像及文字的情绪情感识别进行攻坚,对于一家人数在150人左右的创业公司而言,并不是一个容易达成的目标。但简仁贤认为这是必须要做的事情。
选择这条路径,是基于简仁贤对人机交互未来发展趋势的判断。
“为什么竹间要做的是人脸情绪情感,再加上语义的部分合起来做。我个人坚信,在未来的2到3年,在人机交互里面会成功的公司,一定是具有三个人机交互的能力的,就是视觉,语音的情绪,还有语言。三个要同时具备,如果只是一个集成商,要把这三个技术集成是做不到的。即使做到,也是很碎片的。”
设想是好的,但现实瞬息万变。
两年前简仁贤创业时,人工智能还没有今天这么热。现在,人机交互是当前人工智能热潮中的热门方向,巨头如BAT均已有所布局,赛道上的创业公司也为数不少。
竹间智能面临的已经是一个竞争激烈的市场。
蚂蚁与大象
竹间智能北京办公室位于五道口的一个写字楼内,距离简仁贤上份工作的地点不到三公里。而人工智能也是一个巨头与创业公司近距离搏杀的领域,在技术、人才等各方面,创业公司的资源均不占优,巨头们均重金投入人工智能的背景下,如何以小博大,是摆在竹间智能面前的问题。
从巨头出来的简仁贤对此倒有些不以为意,因为在他看来,大公司AI技术规模化会非常非常慢。
“我自己是在大公司出来的,我在大公司干了二十年,就是他们规模化慢。小公司是很容易规模化,因为我们很专精,我们马上就规模化,标准化。大公司要做标准化,小公司如果说花一年,大公司要花三到五年才有办法标准化。”
人工智能是一个需要长期投入研究,并极依赖数据量的行业。在资金储备上,竹间智能已经完成B轮融资,而在数据量上,简仁贤认为,“大公司有数据是个迷思”,因为“在解决AI问题的时候,(关键在)有没有适当的、合适的、高质量的、能学习的数据。这个数据如果不是能学习的,你再多也没用。”
为了做图像情感情绪识别,竹间智能通过购买、收集等方式积累了百万级的图像数据量,并通过外包团队对其进行了精细的标记。而在应用层,通过与垂直行业客户合作,其可以获得特定领域的准确数据。因此,简仁贤认为,身为创业公司的竹间智能在数据上并没有劣势。
竹间智能目前着力的落地场景是金融、电商及IoT,《Her》激励着研究人机交互的工程师和研究员,激励着简仁贤。不过现在,竹间智能真正同时落地三种识别技术的场景不多,技术的进步空间很大,尤其在语义理解上,竹间智能接下来会投入更多人力。
面对可以预见的激烈竞争,简仁贤颇有自信。在他看来,人工智能的热潮里,创业公司的机会很大。
因为“大公司不可能为其它需要AI场景的公司做定制化服务,在AI的领域里,只有靠小公司才有办法在特定领域里做出来一些场景。”
全国热线电话:
Copyright©2022竹间智能科技(上海)有限公司All Rights Reserved
Copyright©2022 Emotibot Technologies Limited All Rights Reserved