Bot Factory 22
对话式AI平台
Bot Factory 22
对话式AI平台
VCA智能客服
帮助企业实现在线服务的智能化人机协作系统,提高坐席服务的效率、降低人力开销及新人业务知识学习成本
企业助手
Emoti VEA是竹间智能专为企业用户打造的企业级机器人虚拟助理( VEA), 帮助员工在企业工作中减少琐碎的事务负担, 让每个员工都能拥有智能的个人助理
竹间精灵
竹间精灵是搭建在BotFactory上,与之相伴成长的聊天机器人。竹间精灵可以在开放域的聊天场景中,予以用户富有温度的趣味应答,可以快速接入各种渠道,适应于IOT设备、对话机器人等不同场景。
多模态情感数字人
竹间通过文字、图像及语音的人机交互技术与竹间自主研发的“多模态情感识别模型”,助力虚拟形象成为能读懂、看懂、听懂、有记忆、自学习,真正理解人类语言与表情的“情感虚拟形象数字人”。
多模态人机交互
基于竹间智能的人机交互平台,结合图像、语音以及文字的情绪识别完成多模态人机交互。通过多模态的结合,达到听懂,读懂以及看懂的人机交互
语音平台
提供基于语音识别、语音合成、智能打断以及语音情绪侦测等智能语音服务,此平台旨在将客户的语音数据转为文本, 后续由智能机器人对话平台进行话术回复和信息采集, 为产品赋予真正能听会说、 听你懂你的能力。
AICC+ 22
解决方案平台
Emoti Mate 实时坐席助手
EmotiMate是集智能辅助、实时质检、智能陪练为一体,通过对全渠道数据深度解析,实现机器智能和人的智能的深度协同,从执行层、销售/服务管理层、运营管理层三个层面提供辅助工具,包括实时语音转写、流程导航、客户画像提取、话术推荐、实时质检等功能,帮助企业和员工实现高效率的客户服务和高转化率的销售
Emoti QI 实时质检
Emoti QI实时质检通过语音识别技术,将通话录音均转成文字,由机器人根据质检规则对录音进行质检,同时挖掘客户深层次需求,为客户提供个性化服务。基于竹间强大的AI能力为录音提供深层次的挖掘与分析,赋能坐席能力,销售分析,投诉预测,话术挖掘等数据分析能力。
Emoti Voice 语音机器人
竹间智能新一代语音机器人,集成了竹间自研的自然语言处理(NLP)算法与真人语音技术,基于多行业领域细分业务深耕沉淀,更理解业务,更了解客户,更具有智慧。
Emoti Coach 智能培训
基于竹间自研的NLP模型和语义质检模型,融质检和陪练一体,通过质检快速发现服务质量问题,并能根据质检结果,利用坐席画像和推荐系统,针对薄弱环节自动生成培训课程并进行课程推荐,大大提升培训效率,从而不断提升服务质量,实现员工快速上岗、促进员工持续进步。
智能营销
基于多种复合推荐策略以及基于deep-wide深度宽度网络的推荐模型,融合系统内外结构化和非结构化数据,根据用户数据和对话数据产生用户画像,充分勾勒出客户的特点和客户群体特征,配合语义理解和认知引擎,进行相关内容的推送。
Gemini 22
知识工程平台
Gemini KG 知识图谱
GeminiKG是Gemini平台的知识图谱模块。可针对结构化或非结构化数据进行知识图谱构建和schema构建,并可进行schema管理以及端到端的知识图谱应用,包括但不限于智能搜索、文本分析、机器阅读理解、舆情监控、风险控制等
Gemini KM 智能知识库
智能化管理企业海量非结构化的文档和数据,让所有的知识可以用简单的自然语言即可查询、应用。以竹间自研的NLP和KG提供智能搜索和自动文档解析功能,完成企业用人力无法完成的业务
知识关联
自动识别重要信息,对于相关知识直接进行知识、文档关联,不仅保证知识可溯源,消除知识孤岛,而且通过知识内容分析及知识关系分析可进行知识洞察。知识关联后,上下游的知识联动起来,可以进行变更提醒。
知识管理
可以进行多种知识类型管理(文档、文章、流程、图谱等),多源汇聚,平台统一管理应用,权限分级,达到节省管理成本的效果。
智能采编
借助AI智能化技术,将文档中非结构化知识提取转化为结构化知识,极大地降低了知识采编成本。同时提供了一个简约但足够强大的在线文档编辑器用于采编流程,在提供基础文本操作的同时,可以在文档中插入脑图、在线视频、表格、公式等丰富功能。
智能审核
通过机器智能审核来提炼重要信息, 并进行拼写纠错、 语法纠错等检测, 不再依靠人工逐句审核, 减少人工审核的时间, 提高效率, 降低知识风险。
智能应用
通过对非结构化知识的转化、提取及加工,一键将知识发布到下游场景如智能对话系统、坐席辅助机器人、一线知识门户、搜索门户等,发挥知识效能
Gemini Studio
只需几分钟即可零代码创建一个低运营需求文本工作流。Gemini Studio是竹间自研的新一代文本工作流管理平台。可用直观方式设计繁琐、高难度的文本处理工作,对海量文档进行存储管理与应用,自动化提供建构图谱、认知搜索、智能问答、知识推理、文本审核、比对、查重等多种知识应用信息
认知+RPA
通过 Gemini Automation 平台,融合 RPA 与 AI +NLP,实现智能自动化企业。让数字人员工赋予更强的业务处理能力、解放人类的双手和宝贵资源
Scorpio 22
机器学习平台
NLP 22
自然语言处理平台
SaaS 产品
对话机器人
任何人可以通过Bot Factory,获得不同行业不同场景的智能对话服务。能够针对您的业务需求,将对话机器人训练成懂您业务知识和流程,了解您的客户,同时具备客户同理心的7*24数字员工。为您的客户提供更高效、专业的优质服务。
营销助手
Emoti Salesmate是一个“销售对话智能”的产品,通过自然语言处理(NLP)技术对销售人员的语音会话进行解析,帮助一线销售复盘和学习每一次客户沟通,同时赋能销售经理为团队提供培训,通过人工智能捕捉和理解每一次客户互动,然后通过知识图谱与数据分析进行洞察,使团队能够根据知识数据而不是意见作出决策。
陪练机器人
Emoti Coach 是一个沉浸式模拟实战场景的“智能对话练习”产品,通过自然语言处理(NLP)、多模态等技术,完整复刻真实场景发生的对话,企业可用于进行候选人的AI面试,快速甄选人才;也可以帮助企业员工提升销售/客服对话技巧,在第一天成为业务专家。
认知洞察
No-code NLP 平台,以竹间硬核自然语言技术,无需编程,即可将任何非结构化数据自动生成 insights,再以 open API 与任何应用无缝衔接。丰富行业的标签库与知识图谱,让模型训练与标准工作大大降低。
智能知识库
竹间智能知识库是企业的知识大脑,能够将企业积累的海量非结构化文档及异构数据通过自然语言的解析,变成结构化的知识。解锁企业沉睡的非结构化数据,为企业沉淀和积累宝贵的知识资产,并基于这些知识进行查询、语义搜索、分析、预测、决策、洞察、根源分析,做到知识整合,消除知识孤岛和促进企业知识资产沉淀。
AI+金融
构建真正AI一体化的技术能力平台,促进金融科技的进一步发展
AI+银行
推翻碎片化产品服务ALL-In-One 全生命周期解决方案
AI+保险
完成保险服务生态闭环,缔造新时代业务模式
AI+理财
成熟的客户经营和营销体系,实现业务转化,降低营销成本
AI+证券
打造一体化闭环管理模式,通过AI技术支撑和辅助多元化应用场景,重塑行业竞争力
AI+政务
助力政务实现全渠道服务智能化、一网通办智能化、服务热线智能化、政务监管智能化、内部协同智能化,携手迈入“智慧政务”时代
AI+医疗
赋能医疗行业实现智能化转型,全方位辅助科、教、研、医每个环节
AI+企业
让企业里的每一个员工解放重复劳力,专注于核心专业技能更高的工作
AI+IOT
更有温度的智能终端,开启便捷体验新模式
AI+制造
赋能制造业知识管理、售前咨询、售后服务等各业务场景,大幅提升企业管理效率
Avaya Total Solution
竹间智能与Avaya基于业界先进的技术和优势打造联合方案,为新一代联络中心提供智能化应用服务
在线咨询
仅能体验5条对话,更多体验请 申请试用
【金融客服AI新玩法】语言学运用、LSTM+DSSM算法、多模态情感交互
竹间智能 | 2018-01-15
随着人工智能在金融领域的渗透,智能客服已快速进入商业应用阶段。近日新智元在报道中指出,竹间智能正打破传统智能客服的技术壁垒,结合NLP技术、语言学结构及多模态情感交互等,为金融企业提供从智能客服、理财导购到投资辅助的完整AI+金融技术解决方案。
目前,人工智能已经在金融领域渗透:智能客服、智能投顾、人脸支付、智能安防等,已经进入商业化阶段。在这些应用场景中,智能客服属于获客机会最大的业务。
埃森哲(Accenture)去年的《全球消费者消费渠道与市场调研》显示,在银行、保险等金融行业,有七成的消费者愿意选择人工智能客服为他们的消费决策提供建议。正因如此,市场上涌现出大量的智能客服创业公司。
创业公司广泛存在一方面说明行业整体技术壁垒较低,另一方面,也说明智能客服的确在金融领域的应用商业场景还有巨大的开发空间。如何在构建技术壁垒的同时开发更多的商业场景,是创业公司能够脱颖而出关键。
三大痛点:传统NLP方法对意图和语意理解不足、缺少深度学习训练模型数据、无法精确感知用户情绪
通常意义上的智能客服系统有语音客服、文字客服两大形态,其核心技术主要由语音识别、自然语言处理、语音合成组成(部分还涉及到计算机视觉)。其中语音识别与语音合成技术相对比较成熟,但中文的语义理解由于汉语自身的复杂性(诸如分词、歧义、缺乏形态变化、结构松散等),技术难度较大,也被很多业内人士誉为人工智能皇冠上的明珠,也是能否实现高质量人机交互的关键。
智能客服系统框架(图据恒生研究院)
对于智能客服机器人而言,语义理解与意图识别决定了对话机器人的回答准确率。随着深度学习在自然语言处理中的运用,训练数据的质量也成为了智能客服开发的关键。特别是服务于金融、电商等垂直行业的智能客服,相关领域的对话训练数据的质量直接决定了深度学习模型的训练质量。深度学习的运用也成为区别新一代智能客服区与传统以关键词、模版为核心的问答机器人的关键。
另一方面,客服知识库是智能客服的核数据,它存储了所有的问题和相应的答案。用户的提问,将匹配到知识库中的问题,从而将正确的答案返回给用户。知识库的好坏直接决定了智能客服的服务质量和用户体验。
回到金融领域,智能客服的应用解决了金融企业有限的真人客服与庞大的用户服务需求之间的矛盾,以及24小时在线的问题。通过智能客服还能将海量的用户对话数据转化为业务洞察,为后端的精准营销与持续的业务优化提供参考依据。
不过,智能客服在金融领域的应用仍然面临一些挑战:
1、由于金融领域涉及的专业知识与词汇较多,传统NLP方法无法准确理解语义与客户意图。
例如,客户问“中国联通的股票据说要跌?”在分词上,普通的NLP可能会将这句话分为中国联通的股/票据/说要跌?分词上的错误会直接影响到语义的准确理解,让智能客服无法理解问句背后的真实意图,并作出错误的回答或提供不对应的技能和服务。
2、缺乏深度学习模型训练数据。
单纯从业务数据上来讲,金融的数据尤其是交易信息数据非常大,这跟金融业务信息化较早有关。但用户的业务咨询数据、客服数据、金融产品的导购对话数据,长期没有得到充分重视,也缺乏积累和开发,因此可用来进行深度学习的训练数据并不充裕。
3、无法精确感知客户情绪(如电话客服系统)。
金融领域,人类情绪极易随着金融行业市场的波动而起伏不定,经常难免带有情绪与客服沟通,因此带有情感识别与分析的人性化人机交互体验就显得更为重要。当智能客服普遍没有感情时,一个稍微有些“感情”的智能客服系统就会更容易被选择。
技术新招:语言学运用、LSTM+DSSM算法、多模态情感交互等
针对前述问题,在语义理解方面,目前比较新锐的做法是以传统的NLP技术打底,加上语言学结构,结合新的机器学习、深度学习、以及金融知识图谱的方法,融合地去把整个语义理解抽象化后做降维。
目前使用上述方法的竹间智能,其语义理解算法包含言外行为分析、语义角色标准、命名实体识别等四十余个模块,且已迭代至第四代,尝试了对抗生成网络等众多新方法。真正做到金融领域的语义层面的抽象和理解,而不是单纯字词层面的分析。
同时,竹间智能还在金融对话机器人中大范围的利用深度学习。从分词、词性、语法解析、信息抽取等基础模块,到自然语言生成、机器翻译、对话管理、知识问答等高层的NLP领域,几乎都可以应用以CNN、RNN为代表的深度学习模型,并取得不错的效果。
智能客服眼下已是各大服务平台的标配,但多数客服更接近于一个搜索引擎,将用户输入的关键词与数据库的相关答案匹配。对于口语化的提问,这样的智能客服往往很难给出“智能”的回答。蚂蚁金服的LSTM+DSSM(Long Short-Term Memory + DeepStructured Semantic Model)算法能够对用户语义和意图进行很好的理解。用户问题回答得越多,越精准,尤其对于口语化、表述不够完整的提问,机器能够主动理解。
例如,当用户向支付宝智能客服提问“如何退款”时,这种没有上下文的问询,也意味着没有场景。通过LSTM对用户行为轨迹做一个编码,通过深度排序模型,结合用户之前的历史操作,系统能够判断用户的诉求更接近“转账到账户转错了怎么办”,而不是“为什么银行卡转账被退回来了”。
同时,用户来到客服解决问题,往往并不明确自己的问题所在,因此他们的提问也往往很模糊,甚至存在很多缺失的信息。这个时候,反问就很重要,可以通过多轮的交互,来逐步明确用户的真实诉求。
多轮交互一直是对话系统一个很大的挑战,传统的基于语言理解和对话状态跟踪的多轮对话技术并不适用于客服知识问答。蚂蚁金服用问题结构化的思路来解决客服多轮对话,通过算法辅助以人工,对客服知识库中的每个问题进行结构化,搞清楚每个问题是由哪些要素构成的。对用户的提问我们同样识别其中的要素,看看可以匹配到知识库中的哪些问题。如果发生了要素缺失,就反问用户,让用户进行补充和确认。
针对金融领域对话机器人深度学习模型训练数据的缺乏,迁移学习是一个有效的尝试。迁移学习的目的是从一个或多个源任务(source tasks)中抽取知识、经验,然后应用于一个有相关性的目标领域(target domain)中去,从而实现在金融领域跨行业、跨领域的知识学习。
目前,竹间智能尝试使用迁移学习方法,让对话机器人能够跨领域、跨行业学习。尤其当金融类客户在客服、导购等领域面临训练数据缺乏时,在竹间现有训练过的模型基础上做迁移学习可以很大程度上提高模型的性能,达到更好的机器学习效果。
由于情感在人类信息沟通中的意义重大,所以情感计算也是实现人性化的人机交互中必不可少的组成部分,情感识别与理解技术也正逐渐成为人机交互的基础性技术之一。
竹间智能尝试建立起了一套多模态的情感情绪交互模型来解决情感计算的问题。通过找到人机对话中隐藏的信息状态并加入到计算中,并结合内外部的多模态设计,即文本+emoji+照片+表情包+文本长度等,与外部的多模态,即加入面部表情识别+语音情绪识别+提供的标签(比如性格,星座,爱好,年龄,性别等),来实现更深的语义理解和多模态情感交互分析,从而达到人机交互过程中对人更深层次的理解。
竹间多模态情感识别展示傅园慧视频:http://v.qq.com/x/page/t0337j5gc54.html
此外,在知识库构建方面,对于传统的知识库而言,其构建往往依赖于人工运营,由运营专家根据自己的业务经验来决定知识库中会有哪些问题。这样的构建过程需要很多人力成本,后期维护成本也很大,而且并不能发现用户的真实诉求。蚂蚁金服的做法是从过往海量的客服对话记录中,通过文本聚类算法,将相似的问法找出来,形成很多聚类,每个聚类就是一个用户关心的问题
这样的做法还有一个额外的收益就是,聚类算法本身找到了每个问题所有可能的问法,这样就为在线的问题匹配提供了宝贵的数据,用户的提问只要模糊匹配到某个问题的任何一个问法,就可以知道用户想问的是这个问题,这样极大的提升了客服问题匹配准确率。这样一个基于数据挖掘的知识库一直处于自学习的状态,就可以持续的提升智能客服的效果。
从幕后走向台前:智能客服打开更多营销空间
客服部门是银行业务中劳动密集型的部门之一,一家中等规模以上的银行甚至有数千名员工接听客户电话,人工智能可以大幅降低金融业务成本,提升业务效率。
据21世纪经济报道,光大银行电子银行部总经理杨兵兵曾表示,人工智能在银行业务中最早的应用便是智能客服。光大在引入智能客服后,“最近三年每年呼入的话务量有10%的速度增长,但是三年来我们没有增加一名客服。”杨兵兵说,去年光大银行的话务中有近60%是模拟人工服务。
同时,随着人工智能在客户服务领域的不断拓展、互联网获客成本越来越高,智能客服逐渐由售后转向售中和售前,承担起更多企业营销任务。
竹间智能CEO简仁贤介绍,竹间智能将售后、售中、个性化交互三者结合,可以形成端到端的解决方案。
去年底,兴业证券优理宝App上线“小兴机器人”智能客服,它背后正是竹间AI证券机器人解决方案,帮助其实现了智能客服、投资者教育、产品咨询、多轮对话与上下文记忆在内的一系列服务与功能。
小兴机器人”智能客服视频链接:https://v.qq.com/x/page/d0521mrftda.html
简仁贤还透露,在今年第一季度将推出新版的财富管理机器人,将对话机器人实现投资者教育、智能投顾、财富管理。目前,竹间智能的收入主要来源于对话机器人应用,如智能客服、导购机器人、企业助手、个人助理、语义理解、情感情绪分析等,并有望靠自身业务在2018年实现全年的收支平衡。
著名呼叫中心运营及顾问培训专家、亚太客服与呼叫中心联盟APCCAL的发起人以及客户世界机构(CCMWorld Group)的创办人赵溪认为,人工智能完全替代人工客服还为时尚早,但是会对结构化、标准化的客服工作进行替代,这有非常大的市场潜力。
“客服中心是企业对内对外数据整合的一个平台,有大量的数据,因此在大数据的背景下,有更大的挖掘的空间。”赵溪说。
此外,图像识别等技术也越来越多的应用到智能客服中,丰富和拓展了金融客服的场景。蚂蚁金服资深算法专家张家兴介绍,去年7月,蚂蚁金服份发布车险的图像定损功能,今后用户有望直接通过手机拍摄图片,就知道事故车的损害情况以及赔付金额。
“拍照定损对保险业的冲击来说是根本性的,它整个改变了保险业理赔的工作模式。”张家兴说,拍照定损将来还能广泛应用到生鲜电商等多个领域。
全国热线电话:
Copyright©2022竹间智能科技(上海)有限公司All Rights Reserved
Copyright©2022 Emotibot Technologies Limited All Rights Reserved